{ "id": "1706.01356", "version": "v1", "published": "2017-06-05T14:50:00.000Z", "updated": "2017-06-05T14:50:00.000Z", "title": "On the rationality problem for quadric bundles", "authors": [ "Stefan Schreieder" ], "comment": "29 pages", "categories": [ "math.AG" ], "abstract": "We show that a wide class of smooth quadric bundles over rational bases are not stably rational. If the base has dimension n>1, then the possible fibre dimensions range from $2^{n-1}-1$ to $2^{n}-2$. For any r>2, this yields the first known smooth r-fold quadric bundles over rational bases which are not (stably) rational. In our proofs we introduce a generalization of the specialization method of Voisin and Colliot-Th\\'el\\`ene--Pirutka which avoids universally $CH_0$-trivial resolutions of singularities.", "revisions": [ { "version": "v1", "updated": "2017-06-05T14:50:00.000Z" } ], "analyses": { "subjects": [ "14E08", "14M20", "14J35", "14D06" ], "keywords": [ "rationality problem", "rational bases", "smooth r-fold quadric bundles", "fibre dimensions range", "smooth quadric bundles" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }