{ "id": "1706.01051", "version": "v1", "published": "2017-06-04T10:37:33.000Z", "updated": "2017-06-04T10:37:33.000Z", "title": "Equidistribution of expanding translates of curves in homogeneous spaces with the action of $(\\mathrm{SO}(n,1))^k$", "authors": [ "Lei Yang" ], "comment": "19 pages", "categories": [ "math.DS" ], "abstract": "Given a homogeneous space $X = G/\\Gamma$ with $G$ containing the group $H = (\\mathrm{SO}(n,1))^k$. Let $x\\in X$ such that $Hx$ is dense in $X$. Given an analytic curve $\\phi: I=[a,b] \\rightarrow H$, we will show that if $\\phi$ satisfies certain geometric condition, then for a typical diagonal subgroup $A =\\{a(t): t \\in \\mathbb{R}\\} \\subset H$ the translates $\\{a(t)\\phi(I)x: t >0\\}$ of the curve $\\phi(I)x$ will tend to be equidistributed in $X$ as $t \\rightarrow +\\infty$. The proof is based on the study of linear representations of $\\mathrm{SO}(n,1)$ and $H$.", "revisions": [ { "version": "v1", "updated": "2017-06-04T10:37:33.000Z" } ], "analyses": { "subjects": [ "37A17", "22E40", "37D40" ], "keywords": [ "homogeneous space", "expanding translates", "equidistribution", "linear representations", "geometric condition" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }