{ "id": "1706.00451", "version": "v1", "published": "2017-06-01T18:36:39.000Z", "updated": "2017-06-01T18:36:39.000Z", "title": "Lyapunov exponents for binary substitutions of constant length", "authors": [ "Neil MaƱibo" ], "comment": "10 pages", "categories": [ "math.DS" ], "abstract": "A method of confirming the absence of absolutely continuous diffraction via the positivity of Lyapunov exponents derived from the corresponding Fourier matrices is presented, which provides an approach that is independent of previous results on the basis of Dekking's criterion. This yields a positive result for all constant length substitutions on a binary alphabet which are primitive and aperiodic.", "revisions": [ { "version": "v1", "updated": "2017-06-01T18:36:39.000Z" } ], "analyses": { "subjects": [ "37A30", "37D25", "28D20", "52C23" ], "keywords": [ "lyapunov exponents", "binary substitutions", "constant length substitutions", "dekkings criterion", "binary alphabet" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }