{ "id": "1705.10905", "version": "v1", "published": "2017-05-31T01:08:05.000Z", "updated": "2017-05-31T01:08:05.000Z", "title": "Annihilators of the ideal class group of a cyclic extension of an imaginary quadratic field", "authors": [ "Hugo Chapdelaine", "Radan Kučera" ], "categories": [ "math.NT" ], "abstract": "The aim of this paper is to study the group of elliptic units of a cyclic extension $L$ of an imaginary quadratic field $K$ such that the degree $[L:K]$ is a power of an odd prime $p$. We construct an explicit root of the usual top generator of this group and we use it to obtain an annihilation result of the $p$-Sylow subgroup of the ideal class group of $L$.", "revisions": [ { "version": "v1", "updated": "2017-05-31T01:08:05.000Z" } ], "analyses": { "subjects": [ "11R20", "11R27", "11R29" ], "keywords": [ "ideal class group", "imaginary quadratic field", "cyclic extension", "annihilators", "elliptic units" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }