{ "id": "1705.10550", "version": "v1", "published": "2017-05-30T11:26:28.000Z", "updated": "2017-05-30T11:26:28.000Z", "title": "Diffuse Behaviour of Ergodic Sums Over Rotations", "authors": [ "Jean-Pierre Conze", "Stefano Isola", "Stéphane Le Borgne" ], "categories": [ "math.DS", "math.PR" ], "abstract": "For a rotation by an irrational $\\alpha$ on the circle and a BV function $\\varphi$, we study the variance of the ergodic sums $S_L \\varphi(x) := \\sum_{j=0}^{L -1} \\, \\varphi(x + j\\alpha)$. When $\\alpha$ is not of constant type, we construct sequences $(L_N)$ such that, at some scale, the ergodic sums $S_{L_N} \\varphi$ satisfy an ASIP. Explicit non-degenerate examples are given, with an application to the rectangular periodic billiard in the plane.", "revisions": [ { "version": "v1", "updated": "2017-05-30T11:26:28.000Z" } ], "analyses": { "keywords": [ "ergodic sums", "diffuse behaviour", "rectangular periodic billiard", "explicit non-degenerate examples", "bv function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }