{ "id": "1705.09989", "version": "v1", "published": "2017-05-28T20:45:35.000Z", "updated": "2017-05-28T20:45:35.000Z", "title": "The 4-Dimensional Light Bulb Theorem", "authors": [ "David Gabai" ], "categories": [ "math.GT" ], "abstract": "For embedded 2-spheres in a 4-manifold sharing the same embedded transverse sphere homotopy implies isotopy, provided the ambient 4-manifold has no $\\mathbb Z_2$-torsion in the fundamental group. Among other things, this leads to a generalization of the classical light bulb trick to 4-dimensions, the uniqueness of spanning discs for simple closed curves in $S^4$ and $\\pi_0(\\textrm{Diff}_0(S^2\\times D^2)/\\textrm{Diff}_0(B^4))=1$.", "revisions": [ { "version": "v1", "updated": "2017-05-28T20:45:35.000Z" } ], "analyses": { "subjects": [ "57N13", "57N35" ], "keywords": [ "light bulb theorem", "transverse sphere homotopy implies isotopy", "embedded transverse sphere homotopy implies", "classical light bulb trick", "fundamental group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }