{ "id": "1705.09918", "version": "v1", "published": "2017-05-28T09:40:13.000Z", "updated": "2017-05-28T09:40:13.000Z", "title": "A criterion related to the Riemann Hypothesis", "authors": [ "Helmut Maier", "Michael Th. Rassias" ], "categories": [ "math.CA" ], "abstract": "A crucial role in the Nyman-Beurling-B\\'aez-Duarte approach to the Riemann Hypothesis is played by the distance \\[ d_N^2:=\\inf_{A_N}\\frac{1}{2\\pi}\\int_{-\\infty}^\\infty\\left|1-\\zeta A_N\\left(\\frac{1}{2}+it\\right)\\right|^2\\frac{dt}{\\frac{1}{4}+t^2}\\:, \\] where the infimum is over all Dirichlet polynomials $$A_N(s)=\\sum_{n=1}^{N}\\frac{a_n}{n^s}$$ of length $N$. In this paper we investigate $d_N^2$ under the assumption that the Riemann zeta function has four non-trivial zeros off the critical line. Thus we obtain a criterion for the non validity of the Riemann Hypothesis.", "revisions": [ { "version": "v1", "updated": "2017-05-28T09:40:13.000Z" } ], "analyses": { "subjects": [ "30C15", "11M26" ], "keywords": [ "riemann hypothesis", "riemann zeta function", "nyman-beurling-baez-duarte approach", "dirichlet polynomials", "crucial role" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }