{ "id": "1705.08860", "version": "v1", "published": "2017-05-24T16:50:01.000Z", "updated": "2017-05-24T16:50:01.000Z", "title": "Geometric growth for Anosov maps on the $3$ torus", "authors": [ "Mauricio Poletti" ], "categories": [ "math.DS" ], "abstract": "We prove that for Anosov maps of the $3$-torus if the Lyapunov exponents of absolutely continuous measures in every direction are equal to the geometric growth of the invariant foliations then $f$ is $C^1$ conjugated to his linear part.", "revisions": [ { "version": "v1", "updated": "2017-05-24T16:50:01.000Z" } ], "analyses": { "keywords": [ "anosov maps", "geometric growth", "lyapunov exponents", "invariant foliations", "linear part" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }