{ "id": "1705.08626", "version": "v1", "published": "2017-05-24T06:29:17.000Z", "updated": "2017-05-24T06:29:17.000Z", "title": "Dedekind sums take each value infinitely many times", "authors": [ "Kurt Girstmair" ], "categories": [ "math.NT" ], "abstract": "For $a\\in \\Bbb Z$ and $b\\in\\Bbb N$, $(a,b)=1$, let $s(a,b)$ denote the classical Dedekind sum. We show that Dedekind sums take this value infinitely many times in the following sense. There are pairs $(a_i,b_i)$, $i\\in\\Bbb N$, with $b_i$ tending to infinity as $i$ grows, such that $s(a_i,b_i)=s(a,b)$ for all $i\\in \\Bbb N$.", "revisions": [ { "version": "v1", "updated": "2017-05-24T06:29:17.000Z" } ], "analyses": { "keywords": [ "classical dedekind sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }