{ "id": "1705.08592", "version": "v1", "published": "2017-05-24T03:24:06.000Z", "updated": "2017-05-24T03:24:06.000Z", "title": "Sufficient conditions for the existence of a path-factor which are related to odd components", "authors": [ "Yoshimi Egawa", "Michitaka Furuya", "Kenta Ozeki" ], "comment": "18 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "In this paper, we are concerned with sufficient conditions for the existence of a $\\{P_{2},P_{2k+1}\\}$-factor. We prove that for $k\\geq 3$, there exists $\\varepsilon_{k}>0$ such that if a graph $G$ satisfies $\\sum_{0\\leq j\\leq k-1}c_{2j+1}(G-X)\\leq \\varepsilon_{k}|X|$ for all $X\\subseteq V(G)$, then $G$ has a $\\{P_{2},P_{2k+1}\\}$-factor, where $c_{i}(G-X)$ is the number of components $C$ of $G-X$ with $|V(C)|=i$. On the other hand, we construct infinitely many graphs $G$ having no $\\{P_{2},P_{2k+1}\\}$-factor such that $\\sum_{0\\leq j\\leq k-1}c_{2j+1}(G-X)\\leq \\frac{32k+141}{72k-78}|X|$ for all $X\\subseteq V(G)$.", "revisions": [ { "version": "v1", "updated": "2017-05-24T03:24:06.000Z" } ], "analyses": { "keywords": [ "sufficient conditions", "odd components", "path-factor" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }