{ "id": "1705.08007", "version": "v1", "published": "2017-05-22T21:18:02.000Z", "updated": "2017-05-22T21:18:02.000Z", "title": "Elliptic operators with unbounded diffusion, drift and potential terms", "authors": [ "S. E. Boutiah", "F. Gregorio", "A. Rhandi", "C. Tacelli" ], "categories": [ "math.AP" ], "abstract": "We prove that the realization $A_p$ in $L^p(\\mathbb{R}^N),\\,1
2,\\,\\beta >\\alpha -2$ and any constants $b\\in \\mathbb{R}$ and $c>0$. This generalizes the recent results in [A.Canale, A. Rhandi, C. Tacelli, Ann. Sc. Norm. Super. Pisa CI. Sci. (5), 2016] and in [G.Metafune, C.Spina, C.Tacelli, Adv. Diff. Equat., 2014]. Moreover we show that $T(\\cdot)$ is consistent, immediately compact and ultracontractive.", "revisions": [ { "version": "v1", "updated": "2017-05-22T21:18:02.000Z" } ], "analyses": { "keywords": [ "elliptic operator", "potential terms", "unbounded diffusion", "strongly continuous analytic semigroup", "pisa ci" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }