{ "id": "1705.07937", "version": "v1", "published": "2017-05-22T18:26:30.000Z", "updated": "2017-05-22T18:26:30.000Z", "title": "On the cohomology of the mapping class group of the punctured projective plane", "authors": [ "Miguel A. Maldonado", "Miguel A. Xicoténcatl" ], "categories": [ "math.AT", "math.GT" ], "abstract": "The mapping class group $\\Gamma^k(N_g)$ of a non-orientable surface with punctures is studied via classical homotopy theory of configuration spaces. In particular, we obtain a non-orientable version of the Birman exact sequence. In the case of $\\mathbb R {\\rm P}^2$, we analize the Serre spectral sequence of a fiber bundle $F_k(\\mathbb R {\\rm P}^2)/\\Sigma_k \\to X_k \\to BSO(3)$ where $X_k$ is a $K(\\Gamma^k(\\mathbb R {\\rm P}^2),1)$ and $F_k(\\mathbb R {\\rm P}^2)/\\Sigma_k$ denotes the configuration space of unordered $k$-tuples of distinct points in $\\mathbb R {\\rm P}^2$. As a consequence, we express the mod-2 cohomology of $\\Gamma^k(\\mathbb R {\\rm P}^2)$ in terms of that of $F_k(\\mathbb R {\\rm P}^2)/\\Sigma_k$.", "revisions": [ { "version": "v1", "updated": "2017-05-22T18:26:30.000Z" } ], "analyses": { "keywords": [ "mapping class group", "punctured projective plane", "cohomology", "configuration space", "serre spectral sequence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }