{ "id": "1705.07792", "version": "v1", "published": "2017-05-22T15:02:03.000Z", "updated": "2017-05-22T15:02:03.000Z", "title": "Fourier multipliers in Banach function spaces with UMD concavifications", "authors": [ "Alex Amenta", "Emiel Lorist", "Mark Veraar" ], "categories": [ "math.FA", "math.CA" ], "abstract": "We prove various extensions of the Coifman-Rubio de Francia-Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call $\\ell^{r}(\\ell^{s})$-boundedness, which implies $\\mathcal{R}$-boundedness in many cases. The proofs are based on new Littlewood-Paley-Rubio de Francia-type estimates in Banach function spaces which were recently obtained by the authors.", "revisions": [ { "version": "v1", "updated": "2017-05-22T15:02:03.000Z" } ], "analyses": { "subjects": [ "42B15", "42B25", "46E30", "47A56" ], "keywords": [ "banach function spaces", "fourier multipliers", "umd concavifications", "francia-semmes multiplier theorem", "francia-type estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }