{ "id": "1705.07514", "version": "v1", "published": "2017-05-21T22:09:31.000Z", "updated": "2017-05-21T22:09:31.000Z", "title": "A method for construction of rational points over elliptic curves", "authors": [ "Kirti Joshi" ], "comment": "6 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "I provide a systematic construction of points (defined over number fields) on Legendre elliptic curves over $\\mathbb{Q}$: for any odd integer $n\\geq 3$ my method constructs $n$ points on the Legendre curve and I show that rank of the subgroup of the Mordell-Weil group they generate is $n$ if $n\\geq 7$. I also show that every elliptic curve over any number field admits similar type of points after a finite base extension.", "revisions": [ { "version": "v1", "updated": "2017-05-21T22:09:31.000Z" } ], "analyses": { "keywords": [ "rational points", "number field admits similar type", "construction", "legendre elliptic curves", "finite base extension" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }