{ "id": "1705.07042", "version": "v1", "published": "2017-05-19T15:11:56.000Z", "updated": "2017-05-19T15:11:56.000Z", "title": "Relative Entropy and Tsallis Entropy of two Accretive Operators", "authors": [ "M. Raïssouli", "M. S. Moslehian", "S. Furuichi" ], "comment": "7 pages, to appear in C. R. Math. Acad. Sci. Paris", "categories": [ "math.FA", "math.OA" ], "abstract": "Let $A$ and $B$ be two accretive operators. We first introduce the weighted geometric mean of $A$ and $B$ together with some related properties. Afterwards, we define the relative entropy as well as the Tsallis entropy of $A$ and $B$. The present definitions and their related results extend those already introduced in the literature for positive invertible operators.", "revisions": [ { "version": "v1", "updated": "2017-05-19T15:11:56.000Z" } ], "analyses": { "subjects": [ "47A63", "47A64", "46N10", "46L05" ], "keywords": [ "tsallis entropy", "accretive operators", "relative entropy", "weighted geometric mean", "related results extend" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }