{ "id": "1705.06794", "version": "v1", "published": "2017-05-18T20:40:46.000Z", "updated": "2017-05-18T20:40:46.000Z", "title": "Littlewood-Paley-Stein functions for Schrödinger operators", "authors": [ "El Maati Ouhabaz" ], "categories": [ "math.AP" ], "abstract": "We study boundedness on $L^p(R^d)$ of vertical Littlewood-Paley-Stein functions for Schr\\\"odinger operators $-\\Delta + V$ with nonnegative potential $V$. These functions are proved to be bounded on $L^p$ for all $p \\in (1, 2]$. The situation for $p > 2$ is different. We prove for a class of potentials that the boundedness on $L^p$ for some $p > d$ holds if and only if $V= 0$.", "revisions": [ { "version": "v1", "updated": "2017-05-18T20:40:46.000Z" } ], "analyses": { "keywords": [ "schrödinger operators", "study boundedness", "vertical littlewood-paley-stein functions", "nonnegative potential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }