{ "id": "1705.06685", "version": "v1", "published": "2017-05-18T16:41:42.000Z", "updated": "2017-05-18T16:41:42.000Z", "title": "Representations of the Lie algebra of vector fields on a sphere", "authors": [ "Yuly Billig", "Jonathan Nilsson" ], "categories": [ "math.RT" ], "abstract": "For an affine algebraic variety $X$ we study a category of modules that admit compatible actions of both the algebra of functions on $X$ and the Lie algebra of vector fields on $X$. In particular, for the case when $X$ is the sphere $\\mathbb{S}^2$, we construct a set of simple modules that are finitely generated over $A$. In addition, we prove that the monoidal category that these modules generate is equivalent to the category of finite-dimensional rational $\\mathrm{GL}_2$-modules.", "revisions": [ { "version": "v1", "updated": "2017-05-18T16:41:42.000Z" } ], "analyses": { "subjects": [ "17B10", "17B66" ], "keywords": [ "vector fields", "lie algebra", "representations", "affine algebraic variety", "modules generate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }