{ "id": "1705.06581", "version": "v1", "published": "2017-05-18T13:20:26.000Z", "updated": "2017-05-18T13:20:26.000Z", "title": "Products of Differences over Arbitrary Finite Fields", "authors": [ "Brendan Murphy", "Giorgis Petridis" ], "comment": "45 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "There exists an absolute constant $\\delta > 0$ such that for all $q$ and all subsets $A \\subseteq \\mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \\delta}$, then \\[ |(A-A)(A-A)| = |\\{ (a -b) (c-d) : a,b,c,d \\in A\\}| > \\frac{q}{2}. \\] Any $\\delta < 1/13,542$ suffices for sufficiently large $q$. This improves the condition $|A| > q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. Our proof is based on a qualitatively optimal characterisation of sets $A,X \\subseteq \\mathbb{F}_q$ for which the number of solutions to the equation \\[ (a_1-a_2) = x (a_3-a_4) \\, , \\; a_1,a_2, a_3, a_4 \\in A, x \\in X \\] is nearly maximum. A key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao. We also prove a stronger statement for \\[ (A-B)(C-D) = \\{ (a -b) (c-d) : a \\in A, b \\in B, c \\in C, d \\in D\\} \\] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.", "revisions": [ { "version": "v1", "updated": "2017-05-18T13:20:26.000Z" } ], "analyses": { "subjects": [ "11B30" ], "keywords": [ "arbitrary finite fields", "differences", "determining exact algebraic structure", "prime field", "qualitatively optimal characterisation" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable" } } }