{ "id": "1705.06547", "version": "v1", "published": "2017-05-18T12:19:55.000Z", "updated": "2017-05-18T12:19:55.000Z", "title": "Inequalities for the inverses of the polygamma functions", "authors": [ "Necdet Batir" ], "comment": "submitted", "categories": [ "math.CA" ], "abstract": "We provide an elementary proof of the left side inequality and improve the right inequality in \\bigg[\\frac{n!}{x-(x^{-1/n}+\\alpha)^{-n}}\\bigg]^{\\frac{1}{n+1}}&<((-1)^{n-1}\\psi^{(n)})^{-1}(x) &<\\bigg[\\frac{n!}{x-(x^{-1/n}+\\beta)^{-n}}\\bigg]^{\\frac{1}{n+1}}, where $\\alpha=[(n-1)!]^{-1/n}$ and $\\beta=[n!\\zeta(n+1)]^{-1/n}$, which was proved in \\cite{6}, and we prove the following inequalities for the inverse of the digamma function $\\psi$. \\frac{1}{\\log(1+e^{-x})}<\\psi^{-1}(x)< e^{x}+\\frac{1}{2}, \\quad x\\in\\mathbb{R}. The proofs are based on nice applications of the mean value theorem for differentiation and elementary properties of the polygamma functions.", "revisions": [ { "version": "v1", "updated": "2017-05-18T12:19:55.000Z" } ], "analyses": { "subjects": [ "33B15", "26D07" ], "keywords": [ "polygamma functions", "left side inequality", "mean value theorem", "right inequality", "elementary proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }