{ "id": "1705.06517", "version": "v1", "published": "2017-05-18T10:58:30.000Z", "updated": "2017-05-18T10:58:30.000Z", "title": "A conjectural identity for certain parabolic Kazhdan--Lusztig polynomials", "authors": [ "Erez Lapid" ], "categories": [ "math.CO", "math.RT" ], "abstract": "Irreducibility results for parabolic induction of representations of the general linear group over a local non-archimedean field can be formulated in terms of Kazhdan--Lusztig polynomials of type $A_n$. Spurred by these results, we hypothesize a simple identity for certain alternating sums of $2^n$ Kazhdan-Lusztig polynomials with respect to $S_{2n}$.", "revisions": [ { "version": "v1", "updated": "2017-05-18T10:58:30.000Z" } ], "analyses": { "keywords": [ "parabolic kazhdan-lusztig polynomials", "conjectural identity", "local non-archimedean field", "general linear group", "simple identity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }