{ "id": "1705.06445", "version": "v1", "published": "2017-05-18T07:28:30.000Z", "updated": "2017-05-18T07:28:30.000Z", "title": "Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity", "authors": [ "Tobias Black" ], "comment": "19 pages", "categories": [ "math.AP" ], "abstract": "We investigate the parabolic-elliptic Keller-Segel model \\{ {r@{\\,}l@{\\quad}l@{\\quad}l@{\\,}c} u_{t}&\\!\\!\\!=\\Delta u-\\,\\chi\\nabla\\!\\cdot(\\frac{u}{v}\\nabla v),\\ &x\\in\\Omega,& t>0, 0&\\!\\!\\!=\\Delta v-\\,v+u,\\ &x\\in\\Omega,& t>0, \\frac{\\partial u}{\\partial\\nu}&\\!\\!\\!=\\frac{\\partial v}{\\partial\\nu}=0,\\ &x\\in\\partial\\Omega,& t>0, u(&\\!\\!\\!\\!\\!\\!x,0)=u_0(x),\\ &x\\in\\Omega,& in a bounded domain $\\Omega\\subset\\mathbb{R}^n$ $(n\\geq2)$ with smooth boundary. We introduce a notion of generalized solvability which is consistent with the classical solution concept, and we show that whenever $0<\\chi<\\frac{n}{n-2}$ and the initial data satisfy only certain requirements on regularity and on positivity, one can find at least one global generalized solution.", "revisions": [ { "version": "v1", "updated": "2017-05-18T07:28:30.000Z" } ], "analyses": { "subjects": [ "35K55", "35D99", "35A01", "35Q92", "92C17" ], "keywords": [ "global generalized solution", "parabolic-elliptic keller-segel system", "singular sensitivity", "initial data satisfy", "parabolic-elliptic keller-segel model" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }