{ "id": "1705.05864", "version": "v1", "published": "2017-05-16T18:01:10.000Z", "updated": "2017-05-16T18:01:10.000Z", "title": "Extremal functions for the sharp Moser--Trudinger type inequalities in whole space $\\mathbb R^N$", "authors": [ "Van Hoang Nguyen" ], "comment": "27 pages", "categories": [ "math.FA", "math.AP" ], "abstract": "This paper is devoted to study the sharp Moser-Trudinger type inequalities in whole space $\\mathbb R^N$, $N \\geq 2$ in more general case. We first compute explicitly the \\emph{normalized vanishing limit} and the \\emph{normalized concentrating limit} of the Moser-Trudinger type functional associated with our inequalities over all the \\emph{normalized vanishing sequences} and the \\emph{normalized concentrating sequences}, respectively. Exploiting these limits together with the concentration-compactness principle of Lions type, we give a proof of the exitence of maximizers for these Moser-Trudinger type inequalities. Our approach gives an alternative proof of the existence of maximizers for the Moser-Trudinger inequality and singular Moser-Trudinger inequality in whole space $\\mathbb R^N$ due to Li and Ruf \\cite{LiRuf2008} and Li and Yang \\cite{LiYang}.", "revisions": [ { "version": "v1", "updated": "2017-05-16T18:01:10.000Z" } ], "analyses": { "subjects": [ "46E35", "26D10" ], "keywords": [ "sharp moser-trudinger type inequalities", "extremal functions", "singular moser-trudinger inequality", "moser-trudinger type functional", "maximizers" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }