{ "id": "1705.05258", "version": "v1", "published": "2017-05-15T14:17:28.000Z", "updated": "2017-05-15T14:17:28.000Z", "title": "Topological moduli space for germs of holomorphic foliations", "authors": [ "David Marín", "Jean-François Mattei", "Éliane Salem" ], "categories": [ "math.DS", "math.CV", "math.DG" ], "abstract": "This work deals with the topological classification of germs of singular foliations on $(\\mathbb C^{2},0)$. Working in a suitable class of foliations we fix the topological invariants given by the separatrix set, the Camacho-Sad indices and the projective holonomy representations and we compute the moduli space of topological classes in terms of the cohomology of a new algebraic object that we call group-graph. This moduli space may be an infinite dimensional functional space but under generic conditions we prove that it has finite dimension and we describe its algebraic and topological structures.", "revisions": [ { "version": "v1", "updated": "2017-05-15T14:17:28.000Z" } ], "analyses": { "subjects": [ "37F75", "32M25", "32S50", "32S65" ], "keywords": [ "topological moduli space", "holomorphic foliations", "infinite dimensional functional space", "separatrix set", "projective holonomy representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }