{ "id": "1705.05167", "version": "v1", "published": "2017-05-15T11:41:06.000Z", "updated": "2017-05-15T11:41:06.000Z", "title": "Remarks on the arithmetic fundamental lemma", "authors": [ "Chao Li", "Yihang Zhu" ], "comment": "Comments welcome", "categories": [ "math.NT", "math.AG" ], "abstract": "W. Zhang's arithmetic fundamental lemma (AFL) is a conjectural identity between the derivative of an orbital integral on a symmetric space with an arithmetic intersection number on a unitary Rapoport-Zink space. In the minuscule case, Rapoport-Terstiege-Zhang have verified the AFL conjecture via explicit evaluation of both sides of the identity. We present a simpler way for evaluating the arithmetic intersection number, thereby providing a new proof of the AFL conjecture in the minuscule case.", "revisions": [ { "version": "v1", "updated": "2017-05-15T11:41:06.000Z" } ], "analyses": { "subjects": [ "11G18", "14G17", "22E55" ], "keywords": [ "arithmetic intersection number", "afl conjecture", "minuscule case", "zhangs arithmetic fundamental lemma", "unitary rapoport-zink space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }