{ "id": "1705.04635", "version": "v1", "published": "2017-05-12T15:49:28.000Z", "updated": "2017-05-12T15:49:28.000Z", "title": "Local approach to order continuity in Cesàro function spaces", "authors": [ "Tomasz Kiwerski", "Jakub Tomaszewski" ], "comment": "18 pages", "categories": [ "math.FA" ], "abstract": "The goal of this paper is to present a complete characterisation of points of order continuity in abstract Ces\\`aro function spaces $CX$ for $X$ being a symmetric function space. Under some additional assumptions mentioned result takes the form $(CX)_a = C(X_a)$. We also find simple equivalent condition for this equality which in the case of $I=[0,1]$ comes to $X\\neq L^\\infty$. Furthermore, we prove that $X$ is order continuous if and only if $CX$ is, under assumption that the Ces\\`aro operator is bounded on $X$. This result is applied to particular spaces, namely: Ces\\`aro-Orlicz function spaces, Ces\\`aro-Lorentz function spaces and Ces\\`aro-Marcinkiewicz function spaces to get criteria for OC-points.", "revisions": [ { "version": "v1", "updated": "2017-05-12T15:49:28.000Z" } ], "analyses": { "keywords": [ "cesàro function spaces", "order continuity", "local approach", "symmetric function space", "additional assumptions mentioned result" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }