{ "id": "1705.04567", "version": "v1", "published": "2017-05-12T13:46:35.000Z", "updated": "2017-05-12T13:46:35.000Z", "title": "Optimal Monte Carlo Methods for $L^2$-Approximation", "authors": [ "David Krieg" ], "categories": [ "math.NA" ], "abstract": "We construct Monte Carlo methods for the $L^2$-approximation in Hilbert spaces of multivariate functions sampling no more than $n$ function values of the target function. Their errors catch up with the rate of convergence and the preasymptotic behavior of the error of any algorithm sampling $n$ pieces of arbitrary linear information, including function values.", "revisions": [ { "version": "v1", "updated": "2017-05-12T13:46:35.000Z" } ], "analyses": { "subjects": [ "41A25", "41A63", "65C05", "65D15", "65D30", "68Q25", "65Y20" ], "keywords": [ "optimal monte carlo methods", "approximation", "function values", "construct monte carlo methods", "arbitrary linear information" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }