{ "id": "1705.03981", "version": "v1", "published": "2017-05-11T01:08:27.000Z", "updated": "2017-05-11T01:08:27.000Z", "title": "Convergence of ground state solutions for nonlinear Schrödinger equations on graphs", "authors": [ "Ning Zhang", "Liang Zhao" ], "comment": "17 pages, 5 figures", "categories": [ "math.AP" ], "abstract": "We consider the nonlinear Schr\\\"{o}dinger equation $-\\Delta u+(\\lambda a(x)+1)u=|u|^{p-1}u$ on a locally finite graph $G=(V,E)$. We prove via the Nehari method that if $a(x)$ satisfies certain assumptions, for any $\\lambda>1$, the equation admits a ground state solution $u_\\lambda$. Moreover, as $\\lambda\\rightarrow \\infty$, the solution $u_\\lambda$ converges to a solution of the Dirichlet problem $-\\Delta u+u=|u|^{p-1}u$ which is defined on the potential well $\\Omega$. We also provide a numerical experiment which solves the equation on a finite graph to illustrate our results.", "revisions": [ { "version": "v1", "updated": "2017-05-11T01:08:27.000Z" } ], "analyses": { "keywords": [ "ground state solution", "nonlinear schrödinger equations", "convergence", "equation admits", "dirichlet problem" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }