{ "id": "1705.03786", "version": "v1", "published": "2017-05-10T14:14:49.000Z", "updated": "2017-05-10T14:14:49.000Z", "title": "Cohomology and overconvergence for representations of powers of Galois groups", "authors": [ "Aprameyo Pal", "Gergely Zábrádi" ], "comment": "53 pages, submitted", "categories": [ "math.NT", "math.RT" ], "abstract": "We show that the Galois cohomology groups of $p$-adic representations of a direct power of $\\operatorname{Gal}(\\overline{\\mathbb{Q}_p}/\\mathbb{Q}_p)$ can be computed via the generalization of Herr's complex to multivariable $(\\varphi,\\Gamma)$-modules. Using Tate duality and a pairing for multivariable $(\\varphi,\\Gamma)$-modules we extend this to analogues of the Iwasawa cohomology. We show that all $p$-adic representations of a direct power of $\\operatorname{Gal}(\\overline{\\mathbb{Q}_p}/\\mathbb{Q}_p)$ are overconvergent and, moreover, passing to overconvergent multivariable $(\\varphi,\\Gamma)$-modules is an equivalence of categories. Finally, we prove that the overconvergent Herr complex also computes the Galois cohomology groups.", "revisions": [ { "version": "v1", "updated": "2017-05-10T14:14:49.000Z" } ], "analyses": { "keywords": [ "galois groups", "galois cohomology groups", "adic representations", "direct power", "overconvergence" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable" } } }