{ "id": "1705.03573", "version": "v1", "published": "2017-05-10T00:25:24.000Z", "updated": "2017-05-10T00:25:24.000Z", "title": "Schnyder woods, SLE(16), and Liouville quantum gravity", "authors": [ "Yiting Li", "Xin Sun", "Samuel S. Watson" ], "comment": "51 pages, 23 figures", "categories": [ "math.PR" ], "abstract": "In 1990, Schnyder used a 3-spanning-tree decomposition of a simple triangulation, now known as the Schnyder wood, to give a fundamental grid-embedding algorithm for planar maps. We show that a uniformly sampled Schnyder-wood-decorated triangulation with $n$ vertices converges as $n\\to\\infty$ to the Liouville quantum gravity with parameter $1$, decorated with a triple of SLE$_{16}$'s of angle difference $2\\pi/3$ in the imaginary geometry sense. Our convergence result provides a description of the continuum limit of Schnyder's embedding algorithm via Liouville quantum gravity and imaginary geometry.", "revisions": [ { "version": "v1", "updated": "2017-05-10T00:25:24.000Z" } ], "analyses": { "subjects": [ "60C05", "68R10" ], "keywords": [ "liouville quantum gravity", "schnyder wood", "imaginary geometry sense", "planar maps", "schnyders embedding algorithm" ], "note": { "typesetting": "TeX", "pages": 51, "language": "en", "license": "arXiv", "status": "editable" } } }