{ "id": "1705.03344", "version": "v1", "published": "2017-05-09T14:23:26.000Z", "updated": "2017-05-09T14:23:26.000Z", "title": "Diophantine approximation by almost equilateral triangles", "authors": [ "Daniele Mundici" ], "categories": [ "math.NT" ], "abstract": "A {\\it two-dimensional continued fraction expansion} is a map $\\mu$ assigning to every $x \\in\\mathbb R^2\\setminus\\mathbb Q^2$ a sequence $\\mu(x)=T_0,T_1,\\dots$ of triangles $T_n$ with vertices $x_{ni}=(p_{ni}/d_{ni},q_{ni}/d_{ni})\\in\\mathbb Q^2, d_{ni}>0, p_{ni}, q_{ni}, d_{ni}\\in \\mathbb Z,$ $i=1,2,3$, such that \\begin{eqnarray*} \\det \\left(\\begin{matrix} p_{n1}& q_{n1} &d_{n1}\\\\ p_{n2}& q_{n2} &d_{n2}\\\\ p_{n3}& q_{n3} &d_{n3} \\end{matrix} \\right) = \\pm 1\\,\\,\\, \\,\\,\\,\\mbox{and}\\,\\,\\,\\,\\,\\, \\bigcap_n T_n = \\{x\\}. \\end{eqnarray*} We construct a two-dimensional continued fraction expansion $\\mu^*$ such that for densely many (Turing computable) points $x$ the vertices of the triangles of $\\mu(x)$ strongly converge to $x$. Strong convergence depends on the value of $\\lim_{n\\to \\infty}\\frac{\\sum_{i=1}^3\\dist(x,x_{ni})}{(2d_{n1}d_{n2}d_{n3})^{-1/2}},$ (\"dist\" denoting euclidean distance) which in turn depends on the smallest angle of $T_n$. Our proofs combine a classical theorem of Davenport Mahler in diophantine approximation, with the algorithmic resolution of toric singularities in the equivalent framework of regular fans and their stellar operations.", "revisions": [ { "version": "v1", "updated": "2017-05-09T14:23:26.000Z" } ], "analyses": { "subjects": [ "11A55" ], "keywords": [ "diophantine approximation", "equilateral triangles", "two-dimensional continued fraction expansion", "stellar operations", "strong convergence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }