{ "id": "1705.02638", "version": "v1", "published": "2017-05-07T15:47:17.000Z", "updated": "2017-05-07T15:47:17.000Z", "title": "On the exactness of ordinary parts over a local field of characteristic $p$", "authors": [ "Julien Hauseux" ], "comment": "10 pages", "categories": [ "math.RT" ], "abstract": "Let $G$ be a connected reductive group over a non-archimedean local field $F$ of characteristic $p$, $P$ be a parabolic subgroup of $G$, and $R$ be an artinian ring in which $p$ is nilpotent. We prove that the ordinary part functor $\\mathrm{Ord}_P$ is exact on the category of admissible smooth $R$-representations of $G$. We derive some consequences about extensions between admissible smooth $R$-representations of $G$.", "revisions": [ { "version": "v1", "updated": "2017-05-07T15:47:17.000Z" } ], "analyses": { "subjects": [ "22E50" ], "keywords": [ "characteristic", "non-archimedean local field", "ordinary part functor", "admissible smooth", "parabolic subgroup" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }