{ "id": "1705.02597", "version": "v1", "published": "2017-05-07T11:09:28.000Z", "updated": "2017-05-07T11:09:28.000Z", "title": "Perfect powers in alternating sum of consecutive cubes", "authors": [ "Pranabesh Das", "Pallab Kanti Dey", "B. Maji", "S. S. Rout" ], "categories": [ "math.NT" ], "abstract": "Recently, Bennett et al. found all perfect powers in the sum of $d$ consecutive cubes with $2 \\leq d \\leq 50$. In this paper, we consider the problem about finding out perfect powers in alternating sum of consecutive cubes. More precisely, we completely solve the Diophantine equation $(x+1)^3 - (x+2)^3 + \\cdots - (x + 2d)^3 + (x + 2d + 1)^3 = z^p$, where $p$ is prime and $x,d,z$ are integers with $1 \\leq d \\leq 50$.", "revisions": [ { "version": "v1", "updated": "2017-05-07T11:09:28.000Z" } ], "analyses": { "keywords": [ "perfect powers", "consecutive cubes", "alternating sum", "diophantine equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }