{ "id": "1705.02277", "version": "v1", "published": "2017-05-05T15:52:37.000Z", "updated": "2017-05-05T15:52:37.000Z", "title": "Slower deviations of the branching Brownian motion and of branching random walks", "authors": [ "Bernard Derrida", "Zhan Shi" ], "comment": "13 pages and 1 figure", "categories": [ "math-ph", "cond-mat.stat-mech", "math.MP", "math.PR" ], "abstract": "We have shown recently how to calculate the large deviation function of the position $X_{\\max}(t) $ of the right most particle of a branching Brownian motion at time $t$. This large deviation function exhibits a phase transition at a certain negative velocity. Here we extend this result to more general branching random walks and show that the probability distribution of $X_{\\max}(t)$ has, asymptotically in time, a prefactor characterized by non trivial power law.", "revisions": [ { "version": "v1", "updated": "2017-05-05T15:52:37.000Z" } ], "analyses": { "keywords": [ "branching brownian motion", "slower deviations", "large deviation function", "non trivial power law", "general branching random walks" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }