{ "id": "1705.02124", "version": "v1", "published": "2017-05-05T08:38:19.000Z", "updated": "2017-05-05T08:38:19.000Z", "title": "Terminal-Pairability in $K_{n,n}$ revisited", "authors": [ "Lucas Colucci", "Péter L. Erdős", "Ervin Győri", "Tamás Róbert Mezei" ], "comment": "8 pages. arXiv admin note: text overlap with arXiv:1702.04313", "categories": [ "math.CO" ], "abstract": "We investigate the terminal-pairability problem in the case when the base graph is a complete bipartite graph, and the demand graph is a (not necessarily bipartite) multigraph on the same vertex set. We improve the lower bound on the maximum value of $\\Delta(D)$ which still guarantees that the demand graph $D$ is terminal-pairable in this setting. We also prove a sharp result on the maximum number of edges such a demand graph can have.", "revisions": [ { "version": "v1", "updated": "2017-05-05T08:38:19.000Z" } ], "analyses": { "keywords": [ "demand graph", "complete bipartite graph", "vertex set", "base graph", "terminal-pairability problem" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }