{ "id": "1705.01344", "version": "v1", "published": "2017-05-03T10:18:31.000Z", "updated": "2017-05-03T10:18:31.000Z", "title": "Cherlin's conjecture for almost simple groups of Lie rank 1", "authors": [ "Nick Gill", "Francis Hunt", "Pablo Spiga" ], "comment": "14 pages", "categories": [ "math.GR" ], "abstract": "We prove Cherlin's conjecture, concerning binary primitive permutation groups, for those groups with socle isomorphic to $\\mathrm{PSL}_2(q)$, ${^2\\mathrm{B}_2}(q)$, ${^2\\mathrm{G}_2}(q)$ or $\\mathrm{PSU}_3(q)$. Our method uses the notion of a \"strongly non-binary action\".", "revisions": [ { "version": "v1", "updated": "2017-05-03T10:18:31.000Z" } ], "analyses": { "subjects": [ "20B15", "20D06", "03C13" ], "keywords": [ "cherlins conjecture", "simple groups", "lie rank", "concerning binary primitive permutation groups", "socle isomorphic" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }