{ "id": "1705.01203", "version": "v1", "published": "2017-05-02T23:32:16.000Z", "updated": "2017-05-02T23:32:16.000Z", "title": "Countable dense homogeneity and the Cantor set", "authors": [ "Rodrigo Hernández-Gutiérrez" ], "categories": [ "math.GN" ], "abstract": "It is shown that CH implies the existence of a compact Hausdorff space that is countable dense homogeneous, crowded and does not contain topological copies of the Cantor set. This contrasts with a previous result by the author which says that for any crowded Hausdorff space $X$ of countable $\\pi$-weight, if ${}^\\omega{X}$ is countable dense homogeneous, then $X$ must contain a topological copy of the Cantor set.", "revisions": [ { "version": "v1", "updated": "2017-05-02T23:32:16.000Z" } ], "analyses": { "subjects": [ "54G20", "54D65", "54D30", "54B35" ], "keywords": [ "cantor set", "countable dense homogeneity", "topological copy", "compact hausdorff space", "countable dense homogeneous" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }