{ "id": "1705.00671", "version": "v1", "published": "2017-05-01T19:17:08.000Z", "updated": "2017-05-01T19:17:08.000Z", "title": "Regularity of the speed of biased random walk in a one-dimensional percolation model", "authors": [ "Nina Gantert", "Matthias Meiners", "Sebastian Mueller" ], "categories": [ "math.PR" ], "abstract": "We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelsson-Fisk and H\\\"aggstr\\\"om established for this model a phase transition for the asymptotic linear speed $\\overline{\\mathrm{v}}$ of the walk. Namely, there exists some critical value $\\lambda_{\\mathrm{c}}>0$ such that $\\overline{\\mathrm{v}}>0$ if $\\lambda\\in (0,\\lambda_{\\mathrm{c}})$ and $\\overline{\\mathrm{v}}=0$ if $\\lambda>\\lambda_{\\mathrm{c}}$. We show that the speed $\\overline{\\mathrm{v}}$ is continuous in $\\lambda$ on the interval $(0,\\lambda_{\\mathrm{c}})$ and differentiable on $(0,\\lambda_{\\mathrm{c}}/2)$. Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of $\\overline{\\mathrm{v}}$ on $(0,\\lambda_{\\mathrm{c}}/2)$, we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for $\\lambda \\geq \\lambda_{\\mathrm{c}}/2$.", "revisions": [ { "version": "v1", "updated": "2017-05-01T19:17:08.000Z" } ], "analyses": { "subjects": [ "60K37", "82B43" ], "keywords": [ "biased random walk", "one-dimensional percolation model", "conditional bond percolation model", "central limit theorem fails", "regularity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }