{ "id": "1704.08856", "version": "v1", "published": "2017-04-28T09:08:00.000Z", "updated": "2017-04-28T09:08:00.000Z", "title": "Regularity issues for Cosserat continua and $p$-harmonic maps", "authors": [ "Andreas Gastel" ], "categories": [ "math.AP" ], "abstract": "For minimizers in a geometrically nonlinear Cosserat model for micropolar elasticity of continua, we prove interior H\\\"older regularity, up to isolated singular points that may be possible if the exponent $p$ from the model is $2$ or in $(\\frac{32}{15},3)$. The obstacle to full continuity turns out to be the existence of certain minimizing homogeneous $p$-harmonic maps to $S^3$. For those, we slightly improve existing regularity theorems in order to achieve our result on the Cosserat model.", "revisions": [ { "version": "v1", "updated": "2017-04-28T09:08:00.000Z" } ], "analyses": { "subjects": [ "58E20", "74G40", "74B20" ], "keywords": [ "harmonic maps", "cosserat continua", "regularity issues", "full continuity turns", "geometrically nonlinear cosserat model" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }