{ "id": "1704.08643", "version": "v1", "published": "2017-04-27T16:27:26.000Z", "updated": "2017-04-27T16:27:26.000Z", "title": "Factorization formulas of $K$-$k$-Schur functions I", "authors": [ "Motoki Takigiku" ], "comment": "36 pages", "categories": [ "math.CO" ], "abstract": "We give some new formulas about factorizations of $K$-$k$-Schur functions $g^{(k)}_{\\lambda}$, analogous to the $k$-rectangle factorization formula $s^{(k)}_{R_t\\cup\\lambda}=s^{(k)}_{R_t}s^{(k)}_{\\lambda}$ of $k$-Schur functions, where $\\lambda$ is any $k$-bounded partition and $R_t$ denotes the partition $(t^{k+1-t})$ called \\textit{$k$-rectangle}. Although a formula of the same form does not hold for $K$-$k$-Schur functions, we can prove that $g^{(k)}_{R_t}$ divides $g^{(k)}_{R_t\\cup\\lambda}$, and in fact more generally that $g^{(k)}_{P}$ divides $g^{(k)}_{P\\cup\\lambda}$ for any multiple $k$-rectangles $P=R_{t_1}^{a_1}\\cup\\dots\\cup R_{t_m}^{a_m}$ and any $k$-bounded partition $\\lambda$. We give the factorization formula of such $g^{(k)}_{P}$ and the explicit formulas of $g^{(k)}_{P\\cup\\lambda}/g^{(k)}_{P}$ in some cases, including the case where $\\lambda$ is a partition with a single part as the easiest example.", "revisions": [ { "version": "v1", "updated": "2017-04-27T16:27:26.000Z" } ], "analyses": { "keywords": [ "schur functions", "bounded partition", "rectangle factorization formula", "explicit formulas", "single part" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }