{ "id": "1704.08358", "version": "v1", "published": "2017-04-26T21:35:58.000Z", "updated": "2017-04-26T21:35:58.000Z", "title": "On the non-vanishing of certain Dirichlet series", "authors": [ "Sandro Bettin", "Bruno Martin" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "Given $k\\in\\mathbb N$, we study the vanishing of the Dirichlet series $$D_k(s,f):=\\sum_{n\\geq1} d_k(n)f(n)n^{-s}$$ at the point $s=1$, where $f$ is a periodic function modulo a prime $p$. We show that if $(k,p-1)=1$ or $(k,p-1)=2$ and $p\\equiv 3\\mod 4$, then there are no odd rational-valued functions $f\\not\\equiv 0$ such that $D_k(1,f)=0$, whereas in all other cases there are examples of odd functions $f$ such that $D_k(1,f)=0$. As a consequence, we obtain, for example, that the set of values $L(1,\\chi)^2$, where $\\chi$ ranges over odd characters mod $p$, are linearly independent over $\\mathbb Q$.", "revisions": [ { "version": "v1", "updated": "2017-04-26T21:35:58.000Z" } ], "analyses": { "subjects": [ "11M41", "11L03", "11M20", "11R18" ], "keywords": [ "dirichlet series", "periodic function modulo", "odd characters mod", "non-vanishing", "odd rational-valued functions" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }