{ "id": "1704.08226", "version": "v1", "published": "2017-04-26T17:29:23.000Z", "updated": "2017-04-26T17:29:23.000Z", "title": "Uniqueness and persistence of minimal Lagrangian submanifolds", "authors": [ "Jason D. Lotay", "Tommaso Pacini" ], "comment": "18 pages, comments welcome", "categories": [ "math.DG" ], "abstract": "We prove that, in a negative K\\\"ahler--Einstein manifold M, compact minimal Lagrangian submanifolds L are locally unique and for any small K\\\"ahler--Einstein perturbation of M there corresponds a deformation of L which is minimal Lagrangian with respect to the new structure. This provides a new source of examples of minimal Lagrangians. Our results are a simple application of the J-volume functional discussed in arXiv:1404.4227, arXiv:1506.04630", "revisions": [ { "version": "v1", "updated": "2017-04-26T17:29:23.000Z" } ], "analyses": { "keywords": [ "uniqueness", "persistence", "compact minimal lagrangian submanifolds", "simple application", "j-volume functional" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }