{ "id": "1704.07562", "version": "v1", "published": "2017-04-25T07:05:07.000Z", "updated": "2017-04-25T07:05:07.000Z", "title": "Local regularity for fractional heat equations", "authors": [ "Umberto Biccari", "Mahamadi Warma", "Enrique Zuazua" ], "categories": [ "math.AP" ], "abstract": "We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with Dirichlet boundary condition on an arbitrary bounded open set $\\Omega\\subset\\mathbb{R}^N$. The key tool consists in combining classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic equation.", "revisions": [ { "version": "v1", "updated": "2017-04-25T07:05:07.000Z" } ], "analyses": { "keywords": [ "fractional heat equations", "arbitrary bounded open set", "dirichlet boundary condition", "maximal local regularity", "combining classical abstract regularity results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }