{ "id": "1704.07454", "version": "v1", "published": "2017-04-24T20:30:00.000Z", "updated": "2017-04-24T20:30:00.000Z", "title": "Dimer models on cylinders over Dynkin diagrams and cluster algebras", "authors": [ "Maitreyee C. Kulkarni" ], "categories": [ "math.RT", "math.CO", "math.RA" ], "abstract": "In this paper, we describe a general setting for dimer models on cylinders over Dynkin diagrams which in type A reduces to the well studied case of dimer models on a disc. We prove that all Berenstein--Fomin--Zelevinsky quivers for Schubert cells in a symmetric Kac--Moody algebra give rise to dimer models on the cylinder over the corresponding Dynkin diagram. We also give an independent proof of a result of Buan, Iyama, Reiten and Smith that the corresponding superpotentials are rigid using the dimer model structure of the quivers.", "revisions": [ { "version": "v1", "updated": "2017-04-24T20:30:00.000Z" } ], "analyses": { "keywords": [ "cluster algebras", "symmetric kac-moody algebra", "dimer model structure", "schubert cells", "independent proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }