{ "id": "1704.06541", "version": "v1", "published": "2017-04-21T13:48:20.000Z", "updated": "2017-04-21T13:48:20.000Z", "title": "Critical exponent for geodesic currents", "authors": [ "Olivier Glorieux" ], "categories": [ "math.MG", "math.DG" ], "abstract": "For any geodesic current we associated a quasi-metric space. For a subclass of geodesic currents, called filling, it defines a metric and we study the critical exponent associated to this space. We show that is is equal to the exponential growth rate of the intersection function for closed curves.", "revisions": [ { "version": "v1", "updated": "2017-04-21T13:48:20.000Z" } ], "analyses": { "keywords": [ "geodesic current", "critical exponent", "exponential growth rate", "quasi-metric space", "intersection function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }