{ "id": "1704.06438", "version": "v1", "published": "2017-04-21T08:27:02.000Z", "updated": "2017-04-21T08:27:02.000Z", "title": "Quivers with relations for symmetrizable Cartan matrices V. Caldero-Chapoton formula", "authors": [ "Christof Geiß", "Bernard Leclerc", "Jan Schröer" ], "comment": "24 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "We generalize the Caldero-Chapoton formula for cluster algebras of finite type to the skew-symmetrizable case. This is done by replacing representation categories of Dynkin quivers by categories of locally free modules over certain Iwanaga-Gorenstein algebras introduced in Part I. The proof relies on the realization of the positive part of the enveloping algebra of a simple Lie algebra of the same finite type as a convolution algebra of constructible functions on representation varieties of $H$, given in Part III. Along the way, we obtain a new result on the PBW basis of this convolution algebra.", "revisions": [ { "version": "v1", "updated": "2017-04-21T08:27:02.000Z" } ], "analyses": { "subjects": [ "13F60", "16G20" ], "keywords": [ "symmetrizable cartan matrices", "caldero-chapoton formula", "finite type", "convolution algebra", "simple lie algebra" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }