{ "id": "1704.06384", "version": "v1", "published": "2017-04-21T03:25:02.000Z", "updated": "2017-04-21T03:25:02.000Z", "title": "Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian", "authors": [ "Shin Nayatani", "Toshihiro Shoda" ], "comment": "9 pages, 3 figures", "categories": [ "math.DG" ], "abstract": "Jakobson-Levitin-Nadirashvili-Nigam-Polterovich conjectured that a certain singular metric on the Bolza surface, with area normalized, maximizes the first eigenvalue of the Laplacian. In this note, we announce that this conjecture is true, and outline the proof.", "revisions": [ { "version": "v1", "updated": "2017-04-21T03:25:02.000Z" } ], "analyses": { "subjects": [ "58J50", "53A10" ], "keywords": [ "first eigenvalue", "closed surface", "singular metric", "bolza surface", "jakobson-levitin-nadirashvili-nigam-polterovich" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }