{ "id": "1704.05160", "version": "v1", "published": "2017-04-18T00:56:35.000Z", "updated": "2017-04-18T00:56:35.000Z", "title": "Linear recurrences for cylindrical networks", "authors": [ "Pavel Galashin", "Pavlo Pylyavskyy" ], "comment": "31 pages, 9 figures", "categories": [ "math.CO" ], "abstract": "We prove a general theorem that gives a linear recurrence for tuples of paths in every cylindrical network. This can be seen as a cylindrical analog of the Lindstr\\\"om-Gessel-Viennot theorem. We illustrate the result by applying it to Schur functions, plane partitions, and domino tilings.", "revisions": [ { "version": "v1", "updated": "2017-04-18T00:56:35.000Z" } ], "analyses": { "subjects": [ "05E05", "05A15" ], "keywords": [ "linear recurrence", "cylindrical network", "general theorem", "schur functions", "plane partitions" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }