{ "id": "1704.04930", "version": "v1", "published": "2017-04-17T11:07:12.000Z", "updated": "2017-04-17T11:07:12.000Z", "title": "Site Percolation on a Disordered Triangulation of the Square Lattice", "authors": [ "Leonardo T. Rolla" ], "categories": [ "math.PR" ], "abstract": "In this paper we consider independent site percolation in a triangulation of $\\mathbb{R}^2$ given by adding $\\sqrt{2}$-long diagonals to the usual graph $\\mathbb{Z}^2$. We conjecture that $p_c=\\frac{1}{2}$ for any such graph, and prove it for almost every such graph.", "revisions": [ { "version": "v1", "updated": "2017-04-17T11:07:12.000Z" } ], "analyses": { "keywords": [ "square lattice", "disordered triangulation", "independent site percolation", "long diagonals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }