{ "id": "1704.04704", "version": "v1", "published": "2017-04-16T00:31:01.000Z", "updated": "2017-04-16T00:31:01.000Z", "title": "Algebraic characterizations of sub-Riemannian geodesics in semi-simple, connected, compact Lie groups", "authors": [ "AndrĂ¡s Domokos", "Matthew Krauel", "Vincent Pigno", "Corey Shanbrom", "Michael VanValkenburgh" ], "comment": "20 pages", "categories": [ "math.DG" ], "abstract": "In this paper we will use the algebraic information encoded in the root system of a semi-simple, connected, compact Lie group to describe properties of sub-Riemannian geodesics. First we give an algebraic proof that all sub-Riemannian geodesics are normal. We then find characterizations and lengths of the Riemannian and sub-Riemannian geodesic loops in simple, simply connected, compact Lie groups. We provide specific calculations for $SU (2)$ and $SU (3)$.", "revisions": [ { "version": "v1", "updated": "2017-04-16T00:31:01.000Z" } ], "analyses": { "subjects": [ "53C17", "53C22", "22E30", "51N30" ], "keywords": [ "compact lie group", "algebraic characterizations", "semi-simple", "sub-riemannian geodesic loops", "algebraic information" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }