{ "id": "1704.04691", "version": "v1", "published": "2017-04-15T21:37:33.000Z", "updated": "2017-04-15T21:37:33.000Z", "title": "Fourier series and Diophantine approximation", "authors": [ "Han Yu" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "The Duffin-Schaeffer conjecture says that if $\\sum_{p}f(p)\\phi(p)/p=\\infty$, then for Lebesgue a.e number $x\\in [0,1]$, the inequality $|x-q/p|\\log ^B p$ either never holds or holds for sufficiently many $p$ in a precise sense. Here the dependence of numbers $C,B$ is that: $ C>(B+5)/2. $", "revisions": [ { "version": "v1", "updated": "2017-04-15T21:37:33.000Z" } ], "analyses": { "subjects": [ "11J83", "11K55", "11K60" ], "keywords": [ "diophantine approximation", "fourier series", "duffin-schaeffer conjecture says", "extra logarithmic divergence", "fourier analytic method" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }